DAINTech is an innovative new gel phase formulation chassis technology which offers long-term stability; unique and beneficial flow characteristics; and is ecologically responsible

About

University of Edinburgh researchers have developed DAINTech, a new gel-phase formulation chassis technology. The DAINTech technology provides a route to stable formulations with appealing sensory aspects using established and cost-effective industrial materials, and without the use of polymer or microplastic elements. It also offers an alternative potential solution to formulate otherwise challenging ingredients. The platform technology is expected to be broadly applicable to a wide range of industry applications and gives commercial partners the opportunity to implement innovative, environmentally sustainable and commercially valuable formulation products as part of their product development process.

The DAINTech technology is based on the dispersion of particles within a nematic phase. Resulting defect lines form within the dispersion connect and entangle throughout the nematic phase creating a gel phase capable of carrying a dispersed phase of 20% to 45% by volume. The DAINTech technology has been demonstrated with a host of industrial colloids, including spheriglass 3000, spheriglass 5000, titania, calcite, cornflour and sunflower oil in lyotropic nematic phases. The resulting DAINTech formulations are highly viscoelastic, physically stable, and can be water or oil based. The viscoelasticity of the system is tuneable over several magnitudes to provide long-term stability against phase separation and coalescence. T

he DAINTech systems are also exceptionally shear-thinning with a much lower exponent of apparent viscosity than conventional formulation chassis. Notably when the gel phase yields, the viscosity approaches that of the background nematic phase; then when shear is removed the structure and magnitude of the yield stress is recovered within seconds.

Key Benefits

• Long-term stability, even with dense particles.
• Compatible with standard processing equipment and commonly used ingredients.
• Aqueous & non-aqueous compatible.
• Reduced dependence on synthetic polymers and microplastics.

Applications

• Personal care
• Coatings & paints
• Speciality chemicals
• Pharmaceuticals

Purchase a license for full unlimited access to all innovation profiles on LEO

  • Direct connection to thousands of more innovations
  • Access to market Experts and Universities
  • Filter relevant solutions into your own dedicated Network