The significance of this concept is that efficacy of novel drugs can be evaluated against one or more specific ADHD symptom domains and their underlying neurobiological mechanisms.

About

Background: Attention Deficit Hyperactivity Disorder (ADHD) represents a conglomeration of multiple symptoms including inattention, hyperactivity, impulsivity and deficits in working memory. The proposed research shows that a prenatal nicotine exposure mouse model of ADHD displays each one of these symptoms, and that each symptom may have a distinct neurobiological basis. Moreover, the research using this mouse model suggests that improvement can be achieved in each symptom using a drug or a combination of drugs that selectively target specific neurobiological mechanism(s) underlying the symptom(s). However, at the present time, treatment for ADHD is not directed at tackling specific symptom domains or specific neurobiological mechanisms underlying such symptom domains. Development of drugs to target specific symptom domains or mechanisms is hampered by the lack of animal models that display the entire range of ADHD symptom domains, and in which each symptom domain and neurobiological mechanism can be assayed separately. Our mouse model of prenatal nicotine exposure fills this technological gap. Therefore, we advance the novel concept that drugs to selectively tackle each ADHD symptom domain can be screened using our mouse model. The significance of this concept is that efficacy of novel drugs can be evaluated against one or more specific ADHD symptom domains and their underlying neurobiological mechanisms.

Register for free for full unlimited access to all innovation profiles on LEO

  • Discover articles from some of the world’s brightest minds, or share your thoughts and add one yourself
  • Connect with like-minded individuals and forge valuable relationships and collaboration partners
  • Innovate together, promote your expertise, or showcase your innovations